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Abstract--We investigate the secondary streaming motion due to the slow rotation of an axisymmetric body 
in a rotating viscous fluid. We find in general that for all such bodies the velocities tend to zero at a distance 
0(E m) from the body, where E is the (large) Ekman number. Four specific geometries are considered: 
sphere, spheroid, spherical cap and the double sphere; in all except the first case a small Rossby number 
has been assumed. The resultant translational force on the spherical cap, where there is no fore-aft 
symmetry, has been calculated. Further, separated flow in the last two cases can be displayed. 

1. INTRODUCTION 

When an axially symmetric body rotates about its axis of symmetry in a fluid with kinematic 
viscosity v, an angular velocity is imparted to the fluid through the action of viscous forces. A 
basic physical parameter for such flows is the Ekman number E = ~,/Ha 2, where fl is a typical 
angular velocity and a is a representative lateral dimension for the body. When E is suitably 
large the resultant slow viscous motion is essentially a Stokes flow, and the angular velocity can 
be found to the first order in E -~ by solving a simple second order partial differential equation. 
A number of solutions representing different geometries have been presented in the literature 
through the years. 

It is well known that this angular velocity within the fluid develops a pressure gradient 
which, in its turn, must lead to a streaming motion in the fluid. However, there have been few 
studies of this slow viscous ,otreaming flow, and these only for the case when the rotating body 
is a sphere. Childress (1964) extended the perturbation method of Proudman and Pearson in 
considering the extended problem of a uniform flow with velocity U past a sphere which is also 
rotating. His main result was to calculate the correction to the Stokes drag formula valid for 
small Reynolds number R (defined by R = Ua/v) and large Ekman number E such that the 
product R2E is finite. Also, Ranger (1971) showed that the uniform flow past a rotating sphere 
can lead to separation. The main purpose of the present paper is to consider the secondary 
streaming motion alone for four different geometries in an attempt to develop an understanding 
of basic behaviours present. 

It is seen that the magnitude of the velocities in this secondary streaming flow is ~2a3/v ,  and 
so its Reynolds number is small as E -2. When the fluid at infinity is itself rotating (with a 

different angular-velocity than that of the body) a further parameter, the Rossby number, must 
be introduced. If the angular velocity of the fluid is represented by 1"1, and of the body by [11, 
then an effective definition for the Rossby number is [~'~1- ['~1[[~1 "Jl-['~[; this is equivalent to half 
the-classical Rossby number as defined for small Ekman number situations. 

There is one general conclusion that can be reported straightaway. When the streaming flow 
is considered as a slow viscous flow with the forcing term due to the pressure gradient, then the 
Coriolis term in the Navier-Stokes equations is neglected; mathematically, this requires E2>> 1. 
However, the resulting solution shows finite velocities at a large distance from the body. 
Consequently, the solution must be considered as an inner solution, and it is necessary to 
re-introduce the Coriolis term to give the corresponding outer solution. The distance scale is 
0(E~/2), and the streaming velocities are indeed reduced to zero at infinity (see Herron et al. 
1975). 
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The four geometries we consider here are (a) sphere, (b) spheroid, (c) spherical cap, (d) two 
equal non-intersecting spheres. The equation for the streaming flow is linear in the stream 
function, but the forcing term is quadratic in the angular velocity. Unfortunately, a solution to 
this equation has only been found when the body is a sphere if the quadratic term is retained. In 
the other three cases it has been necessary to restrict ourselves to situations where the angular 
velocity difference between that of the body and the fluid at infinity is small--i.e, where the 
Rossby number is small. However, in the first case with the sphere it is seen that there is no real 
qualitative difference between the finite and small Rossby number situations, and so there can 
be some confidence that the more limited solutions in cases (b)--(d) do give worthwhile 
information for the finite Rossby number situations. 

The methods used in the present paper can be considered as a further application of the 
theory of Weinstein involving generalized axisymmetric potentials, and, in particular, follows as 
an extension of the work of Payne & Pell (1960) for standard Stokes flows past axisymmetric 
bodies. The analysis is lengthy in most of the problems considered, but once the basic extension 
has been presented (section 3), the details are often similar to those already in the literature, 
and so the results alone are given when appropriate. 

In all cases, far from the body the basic secondary streaming motion is equivalent to that of 
a point source of angular momentum, and so it can be described (roughly) as an inward flow 
towards the body in the equatorial region with a compensating outward flow in the polar region. 
Closer to the body, there are only certain quantitative adjustments to the flow field for the case 
of the spheroid due to the presence of the solid surface; the qualitative pattern of the 
streamlines is similar to that for the angular momentum source. In cases (c) and (d) the local 
flow is qualitatively different because of the body geometry, and further examples of flow 
separation are found to add to those reviewed recently by O'Neill & Ranger (1979), and by 
Hasimoto & Sano (1980). For the spherical cap there is separated flow for a restricted range 
only of cap angles; the separated region is essentially contained within the cap. With two 
spheres, the separated region, which joins both the spheres, is present for all cases. 

2. ROTATING SPHERE 

It is perhaps best to present the case which leads to the most straightforward analysis before 
indicating the general theory. We introduce spherical polar co-ordinates (r, 0, to); ar represents 
distance in the radial direction, with the surface of the sphere given by r = 1. The velocities in 
the three directions ~, 0, tb can be written 

[~a X l)a ~o , -  ~.______a_a ~,, [2.1] r 2 sin 0 r sin 0 r sin 0 

respectively, ~(r, 0) is the non-dimensional stream function and X(r, 0) the non-dimensional 
azimuthal velocity. With a slow viscous flow, the equation for X is just 

L_IX = 0, [2.2] 

where L_~ is the operator defined by 

0 2 1 0 2 cot 0 a 
L-I  ~ - - ~ + r 2 3 0 2  r 2 00" 

The solution for X, which ensures the angular velocity equals A on r = 1 and tends to unity as 
r~oo, showing the Rossby number ]A - ll/[A + 1[, is 

X={r2+(A -1 ) r  -l}sin 20. [2.3] 
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This angular velocity produces a pressure gradient that gives rise to the secondary streaming 
motion with stream function ",I t, where ~ satisfies the equation 

2X (Xrcoso_ l  xesinO) EL21°/- r 2 sin 2 0 r " [2.4] 

The r.h.s, is derived from the centrifugal acceleration term which is the driving force for the 
Secondary streaming motion; all other non-linear terms in the Navier-Stokes equations have 
been neglected, as they contribute only to third and higher order terms for finite r when E -l is 
small. The solution for • which satisfies the no-slip conditions on the sphere, and has the 
slowest growth at infinity, is 

*:  "?'/ os0sin 0 

The first point to note here is that the streaming velocity does not tend to zero for large r; 
when the fluid is at rest at infinity Ranger (1971) found no term in r 2. Secondly, when we put 
,~ = 1 + ~, with e ,~ 1 (i.e. the Rossby number is small, with the sphere having only a slightly 
different angular velocity from that of the fluid at infinity), then 

1 ~- e41 = - ~  eE-l(r 2 - 2 + r -2) COS 0 sin 2 0 ; [2.6] 

the error is O(e2). This expression could have been gained directly from the linearised version 
of [2.4], where X is replaced by r 2 sin 2 0 + ~ ,  and the quadratic terms in ~ neglected to show 

EL21¢ = 20c, cos 0 - r-l;Co sin O). [2.7] 

It is noted that the qualitative difference between the flows described by [2.5] and [2.6] is indeed 
slight, and gives a definite indication that the Rossby number has a limited role in the type of 
behaviour being considered here. 

Returning to the first point, finite streaming velocities are not physically possible an infinite 
distance from the sphere, and must be a consequence of the restricted equation [2.4] (or [2.6] in 
the linear case); terms have been ignored in the Navier-Stokes equations that are important a 
long distance from the sphere. In effect, it is necessary that an "Oseen" type approximation, 
based on uniform angular velocity at infinity, be taken to bring the velocities at infinity to zero. 

To this end, although for simplicity we restrict the arguments following to the linear 
situation with e '~ 1, we introduce cylindrical co-ordinates where ap and az represent lengths in 
the radial and axial directions. (In the remainder of this section the term "radial" is used in the 
cylindrical sense.) The velocities in the radial, azimuthal and axial directions can be written as 

El~a ~b~, laa (p + ~__X.~, ~ a  
----P-- P / --7- @p [2.8] 

so that the linearized equations become 

L-1X = O, 2X~ = EL2-1¢ [2.91 

corresponding to [2.2] and [2.7] respectively; in cylindrical co-ordinates 

9 2 1 3 02 
L_~- -~ tgp 2 p ~P Oz 2" 
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However, if we make the stretching transformations for large p, z in the Navier-Stokes 
equations, with 

= E-J/2p, z, = E-l/2Z, ~ = ~b, ~ = E1/zX, 

then there results the "Oseen" equations 

2,~e =/21q7, -2~e =/~-l~ [2.101 

where /S_~ is the L_~ operator in terms of ~ and f. The Coriolis term has now been 
re-introduced into the governing equations. We now consider the solution of [2.10] that shows 
the velocities tend to zero as ~= (t~2+ f2)~/2~, and represents the motion due to a rotating 
sphere as ?~0 .  Because the required solution will be an outer solution in the sense of 
Proudman and Pearson, it is sufficient to consider a point source of rotation at f = 0 which will 
represent all finite rotating bodies (to within some multiplicative constant). Consequently, it is 
sufficient to find the solution of 

2)?e =/52_1 ~ and -2~e-2b-18(b)6(~)=/-i)? [2.11] 

that tends to zero at infinity. 
This pair of equations can be solved by taking Hankel transforms in t5 and Fourier 

transforms in z2 The details are straightforward and show 

f0 ~ 
~K - -  0/3 ) e / ,  ,,_-, = b k2 [ (k2- 0/12)2 e~"~--e- F (k2- 0/22) e-~2~ ,,_2 2,2 ~9 - 

[ 0/l(0/22- 0/J2)(0/32- al 2) 0 / 2 ( a ~ - - a ~  a22) ~- 0 / 3 ( 0 / 1 ~  a3 )(0/2 - 0/32"/s~KO~ d k j j  

[2.12] 

where /~'l, O~2, 0/3 are the roots of (a2-k2)3+4a2=O with positive real parts. A similar 
expression follows for ~. To evaluate the integral [2.12] for small L it is sufficient to 
approximate the three roots for a by k - (2k) -~/3, k + ei'~/3(2k) -~/3 and k + e-i'~/3(2k) -1/3, and then 
the square bracket gives just the contribution k -~ e -u, from which it can be confirmed that 

f0 ~e X -~ r K e-~ZJl(rr) dr  = r -1 sin 2 0 

as f ~ 0  (see [2.3]). Correspondingly, ~b-- (1/4)E- l r  2 cos 0sin20 as f ~ 0 .  Together, these 
represent the azimuthal velocity and secondary streaming motion for a point source of angular 
momentum at the origin in a rotating fluid. When f is large, the roots for a can be taken as 
aprox. (l/2)k 3 and 1 + i; only the first contributes to the dominant term which is seen to lead to 

This integral has differing asymptotic approximations depending on the value of g = ~/f3. When 
# ,> 1, the integral has magnitude O(p-2/3,-4/3), and when /z ~ l, it is small as exp ( -  
2/3.3-1/2//,-112). Hence the streaming velocities are algebraically small close to the axis of 
rotation as f - ~ ,  and exponentially small far from the axis. 

This is the desired result; the Stokes theory (where the Coriolis term is neglected) has now 
been properly embedded in an Oseen theory. In each of the other examples that follow, it can 
be seen that the only alteration in the Oseen theory will be the introduction of a multiplicative 
factor for the delta function in [2.11] to represent the size of the sphere to which the body is 
equivalent at a large distance. 
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3. G E N E R A L  THEORY FOR A F I N I T E  ROTATING BODY 

In the present section we briefly indicate the necessary extension to the general approach of 
Payne & Pell (1960) when rotating flows with low Rossby numbers are being considered. The 
main results they used were derived from the generalized axisymmetric potential theory that 
had been developed earlier by Weinstein. When @(k)(p, Z) denotes any solution of 

Lk(V) -- V~o + kp-lvo + V~z = O, [3.1] 

in some suitably simple domain D, then the following expressions are solutions of the basic 

Stokes flow equation L2_l(V) = 0 for the stream function: 

(a) f@(s),(b) zp2@(3),(c) r2p2~(3),(d) f@(1),(e) p4@(s). [3.2] 

Further, any solution of the Stokes equation can be represented as a linear combination of any 

two of the expressions [3.2]. 
Now the equation to be solved to represent the secondary flow is 

EL2-1~b = 2Xz, [3.3] 

where 

L-IX = 0. [3.41 

Eliminating X between [3.3] and [3.4] shows that L3_I@ = 0. The extra result we need is a method 
for finding the particular integral of [3.3]: the rest then follows from the earlier theory. In fact, 
when we write @ = zw, where L2_ltO = 0, then certainly L3_1@ = 0. But L21@ = zL2_ltO + 4L-ltOz, 
and so from [3.3] it is seen that 

1 I 
L-itO = ~ E-  X. [3.5] 

In particular, from [3.5], we can see that 

(a) tO = p2~b(l) implies 4p@o ~1) = E-Ix ,  [3.6] 

(b) tO = p4@(5) implies 4pa@y ) + 1602~b (5) = E-1x,  [3.7] 

(C) tO = r2p2~b (3) implies 8p3~bp (3) + 20p2~b (3) + 8Zp2~bp (3) = E-Ix  ; [3.8] 

we use these results in turn, and when appropriate, in the remaining sections of this paper. 

4. OBLATE SPHEROID 

We introduce elliptic co-ordinates through 

z = sinh ~: cos n p = cosh ~: sin 77, 

and the azimuthal velocity X is given by 

X,, + g , ,  - coth ~:X, - cot 77 • X, = 0 [4.1] 

from [3.4]. The solution that satisfies the condition g = 1 on the spheroid ~ = ~:o(>0), and tends 
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to zero a large distance from the body is 

X = A sin 2 7{(r 2 + 1) arc cot r - r} [4.2] 

where r = sinh s ¢, and A = (ro 2 + 1){(Zo 2 + 1) arc cot t o -  ro} -1. The radius of the sphere to which 

this rotating spheroid is equivalent as r . o o  is 2/3(ro2 + l)-3/ZAa; which is 4a/3rr for the limiting 

case of a finite disc of radius a (where ro = 0). 

We next write 

~//= zp2(I//(1) + I~ (3) + 021//(5)) 

for the stream function. The calculation of ~0 is very similar to that developed by Payne & Pell 
(1960), so it is sufficient to report the solution 

A ~O = ~-~ (r 2 + 1) cos 7 s in2 7[{ - ( 2rz + 2 - 3r 2 sin 2 7 - sin 2 77) - a(  12r2 + 4 - 3 sin z 7 

- 15r 2 sin 2 7) - /~  + 33'(5r 2 + 1)(4 - 5 sin z 7) + 3S}r arc cot r 

+ {fl(r 2 + 1) -I - y (9r  2 + 7)(r 2 + 1)-1(4-  5 sin 2 7) + 3 a ( 4 -  5 sin z 7) 

+ 2a(r z + 1) -I sin 2 7 + (2 - 3 sin 2 7)}] ; [4.3] 

a, fl, a and 6 are constants that are immediately determined by satisfying the conditions 

~0= ~ = 0  on r =  ro. 

In the particular case with a flat disc of radius a, these constants have been evaluated to 

show 

,/.2 
@ = ~ cos 7 sin2 7[12r( r2 + 1) arc cot r .  c o s  2 '17 - 4( 3r2 + 2) cos z 7 - 5]. [4.4] 

The corresponding result for a prolate spheroid follows in a similar fashion. 

5. SPHERICAL CAP 

Because of its role in the development of many slow viscous flow problems, we consider 

this geometry in a little more detail. The method of solution follows fairly closely that 

developed by Dorrepaal et aL (1976) for the uniform flow past a spherical cap. 

Spherical polar co-ordinates are utilised, with the cap given by r = 1, 0_< 0 < _ a. We 

introduce the integral representations (for different values of j) 

V,(r,O)=riiZfSvi(r,a)sina .da  ( "  uj(r, ~)sin a .da  
./0 (cos ,~ - c o s  0) 1/2 = -r'12ao (cos 0 - c o s  a)l/2, r <  1 , 

fo vi(r-1, A) sin a .  da _rll 2 (= ui(r-', A) sin a .  da = r 112 

.,o (cos a - cos O) '/= = ,~ (cos a - cos O) ' / = ' r > l "  [5.11 

These representations were first introduced by Ranger (1972) for the solution of problems 

involving the spherical cap geometry. The functions V~(r, 0) satisfy L-I(V/) = 0 when uj and vj 
are conjugate two dimensional harmonics, which in turn can be expressed in the form 

uj + ivj= ~-~ ~, A.{~)(re'a) "+"/21 
n=l 

[5.21 
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for real coefficients A, ~). Ranger showed that V i can also be given as the series 

Vj(r, O) = f~ A.~)r"+l{P._l(COS O) - P.+l(COS 0)}, r < 1, 
n = l  

00 

= .~z A"°)r-"{P"-l(C°S O) - Pn+I(COS 0)}, r > 1, [5.3] 

where P,(cos 0) are Legendre polynomials. The value of these representations [5.1], as 
demonstrated by Dorrepaal et al., is that vj(1, A) can be found upon satisfying the boundary 
conditions on r = 1; from [5.2] the coefficients A, ~j) are then determined to give Vj(r, O) in series 
form through [5.3]. For the azimuthal velocity we now write X = Vo(r, 0). It follows that 
Vo = sin E O on r = 1 for 0 <- 0 -< a to satisfy the no-slip condition on the cap, and solving the 

resulting integral equation 

fo Vo(1, A) sin A dA 
(cos A - cos O) 1/2 = sinE O, 0-< 0 -< a ,  

gained from [5.1] with ./= O, shows 

4%/2 .  3 
vo(l, A) =--~ sln ~ A, O-<h < a  ; [5.4] 

the same equation was solved by Dorrepaal et al. 
Further, Vor is continuous along r = 1 when a -<- 0 -< ,r, which requires UOr(1, ,t) = 0, whence 

Vo(1, ;t) = constant for a -< ;t _< 7r. Because Vo(1, ,r) must be zero, the value of the constant can be 

evaluated to show 

4%/2 . 3 a 
Vo(1,A) = - - - ~ -  sin ~, a -<A < 7r. [5.5] 

The solution for Vo(r, 0) is completed by calculating 

,, 
- -  , , 1 0  

(i) 
cos n + ~  ,~ 

2 ~ ' s in (n-1)a  s i n ( n + 2 ) a  8 • 3a sm ~- [5.6] 
= 3--~ L n - - l -  n + 2  -3-~ 2 n + l  

The radius of the equivalent sphere for the flow at infinity is (3/2)A1 ~°)= 
alr-l(a - (1/2) sin 2a + (2/3) sin s a);  this result was previously given by Collins (1963) using dual 

series methods. 
For the secondary streaming flow, we know from section 3 that LS_l(r cos 0.  w)= 0 when 

LE_,(to) = 0. Now a general representation for to(r, 0) which satisfies LE_lto = 0 is 

t o = - V l  +(rE- l) (~ rV t r -  VE), [5.7] 

where L-I(Vj) = 0 (Ranger 1972). Therefore, we write ~ = r cos 0.  to, with to given by [5.7], and 
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it follows that the particular integral for the required equation [2.7] is given by 

upon using [3.5]. 
Consequently, 

2(2r 2 Vlrr + 3rV1,) - 4( V2 + 2rV2r) = E- I x ,  

~ = - V3 + ( t 2 - 1 ) ( ~  rV3r - V4) + r cos O{- Vl + ( ~ -  l ) (~  rV, r -  Vz)} 

[5.8] 

[5.9] 

is the appropriate general expression for 0(r, 8), with V~ and V2 given jointly (in a manner soon 
to be discovered) by [5.8], and we now proceed to calculate the functions V~, j = 1, 2, 3, 4. 

First, using the series expansions [5.3] for r < 1 and r > 1 in turn, a pair of simultaneous 
equations are found for A, (l) and A, (~), with solutions 

(2n - 1)(2n + 3)A. ~l) = A. ~°) and (2n - 1)(2n + 3)A. ~2) = ~ A. ~°). [5.10] 

3 V~(r, o)=-~ Vi(r, 0). [5.11] 

Consequently, 

When the values [5.10] are substituted into the series [5.2], it follows that 4(cos A • vt)~ + 

8(sin ,~ • vl)~ = - cos  A • vo when r = 1 for all A. With Vo(1, A) known from [5.4], [5.5], we can 
now calculate 

[5.121 

4X/2 _~ 
vl(1,A) = 1 - ~ s i n  +AI sinA +A2cos A 0_<A_<a, 

= sin 3 ~ + A3 sin A + A4 cos A a -< A -< 7r, 

where A, (n = 1,2,3,4) are arbitrary constants; these, together with v2(1,A)=(3/4)vj(1, a), 
complete the solution for the particular integral. 

The next step is to satisfy the condition ~ = 0 on r = 1 for 0_< 0 - a ,  which implies 
V3(1, 0 )+cos  OV~(1, O)=O for 0_< O<_a. When we use the integral representations for V i 
( /=  1,3), plus the identity 

fo ° fo cos 0 (cos A - cos o)-l/2vl sin AdA = (cos A - C O S  0)1/2{2(Vl COS A)a - / )1  sin A} dA, 

it follows that 

3 
v 3 A = ~ s i n a ' v l - c o s a ' v l A f o r r = l ,  0 < , ~ - < a .  

Integration leads to 

~/2 . 5A 5 ,  1 
v3(1, A) = - ~ sin -~- - ~ -~2 cos 2A - ~ A 1(5 sin 2A - 2A) + As, 0 <- a <- a.  [5.13] 
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Further, 0~ = 0 on  r = 1 for  0 -<  0 <- a ,  and arguments similar to those used in calculating v3 
shows 

_ X / 2 .  5A 25 5 
v4(1, A) - - - ~ -  sln-~-- ~ A2 cos 2A - AI(5 sin 2A - 2A) + A6, 0_<A_<a. [5.141 

Off the surface of the cap, it is necessary to satisfy the conditions that 0(r, 0) and all its 
derivatives are continuous across r = 1 when a -< 0 -< 7r. Now the representation chosen for 0 
automatically ensure that both 0 and 0r satisfy this criterion. From the conditions for Or, and 
0,,~ it follows, following closely the somewhat extended arguments of Dorrepaal et al. (1976), 
that 

v3(1, A)=A7sinA +AscosA +A9A + A i o  , a < A  ~ ' r r ,  [5.15] 

3 3 
v4(1,A)=~A7sinA +~A8cosA + A9A +An,  a <A -<~'. [5.16] 

There are eleven remaining constants to be found before the solution is complete. An 
immediate reduction is possible, for satisfying vj = 0 at r = 1, A = 0, plus vj~ = vjaaa = 0 at r = 1, 
,~ = zr from [5.2], shows A2 = A3 = A5 = A6 = A7 = A9 = 0. Next, because the coefficients An o) 
are given by the inverse of [5.21 (similar to [5.6]), and A~ tl~ and A~ t2) are known from [5.10], the 
constants AI and A4 can be calculated from [5.12]. It is found that 

a _ V 2  (5 sin3a sin52) AI = - - ~ 2  cos5 ~-, A4-  ~-~- ~ - 2  . [5.17] 

The three remaining constants are determined by satisfying V3(1, zr) = V4(1, zr) = 0 (after noting 

that VI(1, lr) and V2(1, It) are already zero), and finally by showing that ~ (V3o + cos aVle),=l 

is finite to ensure that the velocities are bounded at the rim r = 1, 0 = a. These calculations 
require finding the expressions for Vj(1, 0) through the integrals [5.1]. The details still closely 
follow Dorrepaal et al. and lead to the results 

V2 3a s in22+6s  m ~) ,  A8----~--~sin -~-(5- 16 • 4a 

: . °  

V/2 { 2 s i n 2 ( 3 3 _ 6 7 c o s 2 2 + 2 4 c o s 4 2 + 3 1 c o s 6 . ~ _ o c o s  ~ -} -15a c os52} .  An = li~-~ [5.18] 

The coefficients An °~ can now be obtained directly to complete the formal solution. 
Some general results of physical interest can be developed at this juncture. First, the lack of 

fore-aft symmetry with the spherical cap implies that the secondary streaming flow will lead to 
a force on the cap in the axial direction. The general result for the drag given by Payne and Pell 
leads here to the expression 

F = 21re~I~a2{3(AI °) + 2Ai (4)) + 2(A2 (1) + A2(2))}. 

These coefficients can be calculated to show the resultant force 

F = ~ e~tfla 2 sin 3 ~ .  cos 5 1 + cos 2 , [5.191 
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in the direction of 0 = ~'; this is an attractively simple formula. The maximum value for F is 
2.982 E#fla:  when a = ao=71.5 °. 

To investigate the possibility of a separated flow we consider the representation for ~ in the 
neighbourhood of the rim. A system of local polar co-ordinates (r, tr) is defined by r =  
1 - s  r sin o-, 0 = a + ~'cos o', centred on the rim. An extended analysis then shows that the 
leading term for small ( is 

16X/(2)~3/2X/(sina)sinZa 3c~ 3 o { (  a ~ , a \  
0 = 15~" 2 COS cos 3 - cos 2 ~- - z cos ~'} 

- t a n 2 t a n  2 5 - 4 c o s  ~ - - 6 c o s  4 . 

Therefore, the streamline ~b = 0 leaves the rim at an angle ~r = ~o, where 

tan-~-=cot~-  or° a ( 3 - c o s : 2 - 2 c o s 4 2 ) ( 5 - 4 c o s 2 ~ - - ~ c o s a  , 4a~-'~.). 

Now separation occurs when the above formula leads to a positive angle, with the free 

streamline ~ = 0 being the dividing line in the fluid for the separated flow region, which is 
essentially inside the cap. This domain is found to be given by ac -< a -< 7r, where ac --- 73.9 °. 

The separation streamline ~b = 0 is drawn in figure 1 for two representative cases a = ~r[2 
and a = 2~'/3. 

A' 

(a) 

Figure 1. Regions of separation for the spherical cap with rim AA' when (a) a = (1/2)~- and (b) a = (2/3)¢r. 
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6. TWO SPHERES 

The Stokes flow past two spheres (the centres of both spheres lie on the axis of symmetry) 
was considered by Davis et al. (1976), and we follow their notation in this section. Bipolar 
co-ordinates ~:, ~ are defined by 

c sin "0 c sinh 
z - (c > 0) ; [6.1] 

P = cosh ~ - cos ~' cosh ~:- cos 

the spheres (z -+ c coth ~:o) 2 + p2 = c 2 cosech 2 ~o are represented by ~ = -+~:o. We assume here that 
the spheres both rotate about the z-axis with angular velocity 12(1 + ~), with the fluid at infinity 
having the angular velocity l-l; there is a symmetry about z = O. In the new co-ordinates the 

operator 

0 2 0 2 sinh ~: ~ + 1 - cosh ~: cos ~/ 
L - i - ~ - ~ + - ~ - ~  c o s h ~ - c o s n  c o s h ~ - c o s n  On' 

and the general solution of L-I g = O, which is even in ~, can be written as 

X--(cosh ~:-cos r/)'nsin2 ~ ~ an cosh (n +~)~:" P'(/x),  [6.2] 
n=O 

where/z = cos "0. When we require X = p2 on ~: = -+~:o, the coefficients an are found to be 

( ')  a. = 2X/(2)c 2 e -("+¢1/2))~" sech n + ~ ~:o, n = 0, l, 2 . . . . .  [6.31 

It follows that the action of the two spheres at a large distance is equivalent to that of a single 
sphere with radius 

X/(2c) ..., n(n + Dan a, 
n=O 

from which the torque to maintain the motion can readily be found. 
To find the secondary streaming flow, we represent the particular integral for the solution of 

EL2-j4 , = 2t'z by 

~bp=zP20fi')= E(coshC2 sinh ~: sin2 r / ~  - cos 77) 'n + ( ~ )  z.., d. cosh n + ~:. P.(~). [6.4] 
n=O 

From [3.6], and after utilising many of the basic properties of Legendre polynomials, it can be 
shown that this leads to 

1 2d . -dn_ l -d .+ l=~a . ,  n = 1,2,3 . . . . .  [6.5] 

When we define en = d , ' d . _ t  for n = 1,2,3 . . . . .  the difference equation [6.5] becomes 
e. - e.+t = (1/2)a. for n = 1,2, 3 . . . . .  The unique solution for e~, which is exponentially small as 
n --} ~, is then given by 

e . - -~  ai, n = 1,2,3 . . . . .  
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Hence, the unique solution for d,, with the required behaviour that d. ~ 0  exponentially as 
n ~ ~,  is 

d,=- ~, el, n=0 ,1 ,2  . . . .  
i=n+l 

to complete the solution for the particular integral. 
We now add to 4~p the general solution of L2_I~b = 0, that can be written as 

c2 ® (n ~) so+ c. sinh +~)  

[6.6] 

When [6.4] and [6.6] are added together, we find that the general solution for ~O is most 
conveniently expressed as the single series 

~b = E(cosh ~:_ cos r/)m ~__, {r, sinh sinh (n +~)s¢ 

x {P.-I(~) - P~÷I(~)} [6.7] 

where 

n ( n + l )  d.-l+~b, n + l  b,-i 
r. = 2(2n-])(-~n + 1) 2n + 1 ' 

_ n ( n + l )  f d.-i  + d,,+l "1 1 1 n n + l  
s. 2--~-n¥-O~.2n-~ ~-~+~b.+~c.  2n+lb.+,-~¥-~C._l, 

n(n + 1) I n 
t.= 2(n+l)(n+3)d.+l+~C. 2n+lC.+l ,  [6.8] 

for n = 1, 2, 3 . . . .  ; for consistency, bo = Co = 0 in the above formulae. These difference relations 
[6.8] are coupled, and in effect give a single expression relating the three coefficients r,, s., t,; 
no simplification appears to be possible. The two final expressions between the coefficients 
follows from satisfying the no-slip conditions on s c = -%% to give 

r. sinh (n 3 --~)~o+s. sinh(n+~)(o+t, sinh(n+~)~o=O 

(2n -  3)r. cosh (n-~)s%+(2n + l)s. cosh (n +~)s%+ (2n + 5)t. cosh (n +~)~o = 0. [6.9] 

This concludes the formal solution. 
It is clear that a general discussion on the lines followed by Davis et al. (1976) is not 

possible here because of the complexity of the above relations, and so we restrict the remainder 
of this section to a discussion of the particular case where ~:o = 1. Other cases have been 
considered, but the present example appears to be sufficiently illustrative. The coefficients 
decay fairly rapidly, and r., s. can be neglected for n > 8, t. for n > 6, to give satisfactory 
accuracy. Separated flow is found to exist. The adjacent poles of the two spheres both attract 
fluid, in opposition to the general effect of the spheres, when considered as a single rotating 



THE INFLUENCE OF ROTATION IN SLOW VISCOUS FLOWS 491 

Figure 2, Separated region for the two equal spheres with ~0 = I. 

body, to spin fluid out along the equator z = 0; separated flow can be seen as a possible 
consequence of this simple kinematic understanding. The streamline ~b = 0 is shown in figure 2. 
There is fore-aft symmetry, and so no resultant translational force exists. 

7. D I S C U S S I O N  

Ranger (1971) considered the combination of a uniform flow past a sphere that is itself 
rotating, and calculated the secondary streaming motion. When the velocity for the uniform 
flow is U, then the two effects will have equal magnitude when U and ~2a3[v are of the same 
order, given that the Rossby number is finite. That is, if we write R = Ua/~, as the Reynolds 
number for the uniform flow, then it is necessary that RE 2= O(1) for a balance. The 
combination of the two basic flows is linear, and so it is sufficient just to add the two solutions 
together. Ranger found that the flow separated at the rear of the sphere. When the fluid at 
infinity is also rotating, there is an additional interesting feature. We combine [2.5] with the 
classic uniform flow solution 

3 1 U(~ r2-~r +~r-1)sin2 0, 

for the stream function, and see that when 

RE 2 < ~ (A - 1) 

the region of separation still extends as r increases to infinity. Hence, the separated flow enters 
the "Oseen" domain with distances that are O(E 112) away from the sphere. Clearly this region is 
closed, but it requires calculations within the "Oseen" domain to effect the closure. 

When the Rossby number is small, then it is necessary that RE 2= O(~) for a balance 
between the uniform stream and secondary streaming flows. For each of the different 
geometries considered here the corresponding uniform stream results have already been 
referenced in the literature. In the particular case of the finite disc, we combine [4.4] with the 
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stream function 

1 
U sin 2 r/[(r 2 + 1) - 2*r-l{('r 2 + 1) arc cot ~" + r}] 

for the uniform flow case. 
It can be seen that separation takes place at the rim of the disc, and the angle the streamline 

~, = 0 makes with the disc is 

arc tan [ 4 8 7 r a ( 6 4 a  2 - 9¢r2)-1], a = RE2/E ; 

this angle takes on all values between 0 and or. 
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